Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 428, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594590

RESUMEN

NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.


Asunto(s)
Metabolismo Energético , NAD , Ratones , Animales , NAD/metabolismo , Microscopía Fluorescente , Oxidación-Reducción , Envejecimiento
2.
Sci Immunol ; 9(93): eadj7238, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489349

RESUMEN

Adaptive immunity requires the expansion of high-affinity lymphocytes from a heterogeneous pool. Whereas current models explain this through signal transduction, we hypothesized that antigen affinity tunes discrete metabolic pathways to license clonal lymphocyte dynamics. Here, we identify nicotinamide adenine dinucleotide (NAD) biosynthesis as a biochemical hub for the T cell receptor affinity-dependent metabolome. Through this central anabolic role, we found that NAD biosynthesis governs a quiescence exit checkpoint, thereby pacing proliferation. Normalizing cellular NAD(H) likewise normalizes proliferation across affinities, and enhancing NAD biosynthesis permits the expansion of lower affinity clones. Furthermore, single-cell differences in NAD(H) could predict division potential for both T and B cells, before the first division, unmixing proliferative heterogeneity. We believe that this supports a broader paradigm in which complex signaling networks converge on metabolic pathways to control single-cell behavior.


Asunto(s)
Linfocitos , NAD , Linfocitos/metabolismo , Metaboloma , Transducción de Señal
3.
Front Immunol ; 14: 1064293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891303

RESUMEN

Background: Compared to healthy controls, severe COVID19 patients display increased levels of activated NLRP3-inflammasome (NLRP3-I) and interleukin (IL)-1ß. SARS-CoV-2 encodes viroporin proteins E and Orf3a(2-E+2-3a) with homologs to SARS-CoV-1, 1-E+1-3a, which elevate NLRP3-I activation; by an unknown mechanism. Thus, we investigated how 2-E+2-3a activates the NLRP3-I to better understand the pathophysiology of severe COVID-19. Methods: We generated a polycistronic expression-vector co-expressing 2-E+2-3a from a single transcript. To elucidate how 2-E+2-3a activates the NLRP3-I, we reconstituted the NLRP3-I in 293T cells and used THP1-derived macrophages to monitor the secretion of mature IL-1ß. Mitochondrial physiology was assessed using fluorescent microscopy and plate reader assays, and the release of mitochondrial DNA (mtDNA) was detected from cytosolic-enriched fractions using Real-Time PCR. Results: Expression of 2-E+2-3a in 293T cells increased cytosolic Ca++ and elevated mitochondrial Ca++, taken up through the MCUi11-sensitive mitochondrial calcium uniporter. Increased mitochondrial Ca++ stimulated NADH, mitochondrial reactive oxygen species (mROS) production and the release of mtDNA into the cytosol. Expression of 2-E+2-3a in NLRP3-I reconstituted 293T cells and THP1-derived macrophages displayed increased secretion of IL-1ß. Increasing mitochondrial antioxidant defenses via treatment with MnTBAP or genetic expression of mCAT abolished 2-E+2-3a elevation of mROS, cytosolic mtDNA levels, and secretion of NLRP3-activated-IL-1ß. The 2-E+2-3a-induced release of mtDNA and the secretion of NLRP3-activated-IL-1ß were absent in cells lacking mtDNA and blocked in cells treated with the mitochondrial-permeability-pore(mtPTP)-specific inhibitor NIM811. Conclusion: Our findings revealed that mROS activates the release of mitochondrial DNA via the NIM811-sensitive mitochondrial-permeability-pore(mtPTP), activating the inflammasome. Hence, interventions targeting mROS and the mtPTP may mitigate the severity of COVID-19 cytokine storms.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Viroporinas , SARS-CoV-2/genética , Poro de Transición de la Permeabilidad Mitocondrial , ADN Mitocondrial/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(45): e2212417119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322731

RESUMEN

Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) ND5 m.13708G>A (A458T) variant arising on the mtDNA haplogroup H7A background, an extremely rare combination. Analysis of transmitochondrial cybrids with the 13708A-H7 mtDNA revealed a lower mitochondrial respiration, increased reactive oxygen species production (mROS), and dysregulation of connective tissue gene expression. The mitochondrial dysfunction was exacerbated by histamine, explaining why all eight surviving children inherited the dysfunctional histidine decarboxylase allele (W327X) from the father. Thus, certain combinations of common mtDNA variants can cause mitochondrial dysfunction, mitochondrial dysfunction can affect extracellular matrix gene expression, and histamine-activated mROS production can augment the severity of mitochondrial dysfunction. Most important, we have identified a previously unreported genetic cause of mitochondrial disorder arising from the incompatibility of common, nonpathogenic mtDNA variants.


Asunto(s)
ADN Mitocondrial , Histamina , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Haplotipos , Histamina/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Tejido Conectivo/metabolismo
5.
Mol Metab ; 64: 101560, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35940554

RESUMEN

OBJECTIVE: Mitochondrial disorders are often characterized by muscle weakness and fatigue. Null mutations in the heart-muscle adenine nucleotide translocator isoform 1 (ANT1) of both humans and mice cause cardiomyopathy and myopathy associated with exercise intolerance and muscle weakness. Here we decipher the molecular underpinnings of ANT1-deficiency-mediated exercise intolerance. METHODS: This was achieved by correlating exercise physiology, mitochondrial function and metabolomics of mice deficient in ANT1 and comparing this to control mice. RESULTS: We demonstrate a peripheral limitation of skeletal muscle mitochondrial respiration and a reduced complex I respiration in ANT1-deficient mice. Upon exercise, this results in a lack of NAD+ leading to a substrate limitation and stalling of the TCA cycle and mitochondrial respiration, further limiting skeletal muscle mitochondrial respiration. Treatment of ANT1-deficient mice with nicotinamide riboside increased NAD+ levels in skeletal muscle and liver, which increased the exercise capacity and the mitochondrial respiration. CONCLUSION: Increasing NAD+ levels with nicotinamide riboside can alleviate the exercise intolerance associated to ANT1-deficiency, indicating the therapeutic potential of NAD+-stimulating compounds in mitochondrial myopathies.


Asunto(s)
Translocador 1 del Nucleótido Adenina , Miopatías Mitocondriales , NAD , Niacinamida , Condicionamiento Físico Animal , Compuestos de Piridinio , Translocador 1 del Nucleótido Adenina/genética , Animales , Ratones , Miopatías Mitocondriales/genética , Debilidad Muscular , Niacinamida/análogos & derivados , Niacinamida/farmacología , Isoformas de Proteínas , Compuestos de Piridinio/farmacología
6.
Proc Natl Acad Sci U S A ; 119(18): e2200549119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35482926

RESUMEN

Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.


Asunto(s)
Enfermedades Mitocondriales , Condicionamiento Físico Animal , Animales , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , Condicionamiento Físico Animal/fisiología , Resistencia Física/genética
7.
Front Mol Biosci ; 8: 671274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195227

RESUMEN

Alzheimer's disease (AD), the most prevalent form of dementia, affects globally more than 30 million people suffering from cognitive deficits and neuropsychiatric symptoms. Substantial evidence for the involvement of mitochondrial dysfunction in the development and/or progression of AD has been shown in addition to the pathological hallmarks amyloid beta (Aß) and tau. Still, the selective vulnerability and associated selective mitochondrial dysfunction cannot even be resolved to date. We aimed at optically quantifying mitochondrial function on a single-cell level in primary hippocampal neuron models of AD, unraveling differential involvement of cell and mitochondrial populations in amyloid precursor protein (APP)-associated mitochondrial dysfunction. NADH lifetime imaging is a highly sensitive marker-free method with high spatial resolution. However, deciphering cellular bioenergetics of complex cells like primary neurons has still not succeeded yet. To achieve this, we combined highly sensitive NADH lifetime imaging with respiratory inhibitor treatment, allowing characterization of mitochondrial function down to even the subcellular level in primary neurons. Measuring NADH lifetime of the same neuron before and after respiratory treatment reveals the metabolic delta, which can be taken as a surrogate for cellular redox capacity. Correlating NADH lifetime delta with overexpression strength of Aß-related proteins on the single-cell level, we could verify the important role of intracellular Aß-mediated mitochondrial toxicity. Subcellularly, we could demonstrate a higher respiration in neuronal somata in general than dendrites, but a similar impairment of somatic and dendritic mitochondria in our AD models. This illustrates the power of NADH lifetime imaging in revealing mitochondrial function on a single and even subcellular level and its potential to shed light into bioenergetic alterations in neuropsychiatric diseases and beyond.

8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536343

RESUMEN

Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/metabolismo , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Electroencefalografía , Endofenotipos , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Mitocondrias/patología , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo
9.
Sci Signal ; 12(588)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266851

RESUMEN

Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community. In cross-fostering studies, we found that although the initial microbiota community of newborn mice was that obtained from the nursing mother, the microbiota community progressed toward that characteristic of the microbiome of unfostered pups of the same genotype within 2 months. Analysis of the mitochondrial DNA variants associated with altered gut microbiota suggested that microbiome species diversity correlated with host reactive oxygen species (ROS) production. To determine whether the abundance of ROS could alter the gut microbiota, mice were aged, treated with N-acetylcysteine, or engineered to express the ROS scavenger catalase specifically within the mitochondria. All three conditions altered the microbiota from that initially established. Thus, these data suggest that the mitochondrial genotype modulates both ROS production and the species diversity of the gut microbiome, implying that the connection between the gut microbiome and common disease phenotypes might be due to underlying changes in mitochondrial function.


Asunto(s)
ADN Mitocondrial/genética , Microbioma Gastrointestinal/genética , Variación Genética , Mitocondrias/genética , Factores de Edad , Animales , Bacterias/clasificación , Bacterias/genética , Catalasa/genética , Catalasa/metabolismo , Genotipo , Interacciones Microbiota-Huesped/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31253706

RESUMEN

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Epigenoma , Acetilcoenzima A/metabolismo , Línea Celular , Histonas/metabolismo , Humanos , Metaboloma , Mitocondrias/metabolismo , NAD/metabolismo , Transcripción Genética
11.
Cytometry A ; 95(1): 34-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30211978

RESUMEN

More than 60 years ago, the idea was introduced that NADH autofluorescence could be used as a marker of cellular redox state and indirectly also of cellular energy metabolism. Fluorescence lifetime imaging microscopy of NADH autofluorescence offers a marker-free readout of the mitochondrial function of cells in their natural microenvironment and allows different pools of NADH to be distinguished within a cell. Despite its many advantages in terms of spatial resolution and in vivo applicability, this technique still requires improvement in order to be fully useful in bioenergetics research. In the present review, we give a summary of technical and biological challenges that have so far limited the spread of this powerful technology. To help overcome these challenges, we provide a comprehensible overview of biological applications of NADH imaging, along with a detailed summary of valid imaging approaches that may be used to tackle many biological questions. This review is meant to provide all scientists interested in bioenergetics with support on how to embed successfully NADH imaging in their research. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/metabolismo , NAD/química , Fluorescencia , Microscopía Fluorescente/métodos , Imagen Óptica , Oxidación-Reducción , Espectrometría de Fluorescencia
12.
Orthop Clin North Am ; 49(4): 397-403, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30224001

RESUMEN

Faced with increasing pressure to reduce costs, hospitals must find new ways to eliminate waste while simultaneously maintaining the highest quality of care. For any institution, these can types of changes can be complex and burdensome. This article outlines several methods that have been successful in reducing costs while maintaining high quality and highlights feasible methodologies that can help health care providers implement new quality improvement protocols.


Asunto(s)
Artroplastia de Reemplazo/normas , Artropatías/cirugía , Articulaciones/cirugía , Mejoramiento de la Calidad , Humanos
13.
Neurophotonics ; 4(4): 045004, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29181426

RESUMEN

Alterations of cellular bioenergetics are a common feature in most neurodegenerative disorders. However, there is a selective vulnerability of different brain regions, cell types, and even mitochondrial populations to these metabolic disturbances. Thus, the aim of our study was to establish and validate an in vivo metabolic imaging technique to screen for mitochondrial function on the subcellular level. Based on nicotinamide adenine dinucleotide (phosphate) fluorescence lifetime imaging microscopy [NAD(P)H FLIM], we performed a quantitative correlation to high-resolution respirometry. Thereby, we revealed mitochondrial matrix pH as a decisive factor in imaging NAD(P)H redox state. By combining both parameters, we illustrate a quantitative, high-resolution assessment of mitochondrial function in metabolically modified cells as well as in an amyloid precursor protein-overexpressing model of Alzheimer's disease. Our metabolic imaging technique provides the basis for dissecting mitochondrial deficits not only in a range of neurodegenerative diseases, shedding light onto bioenergetic failures of cells remaining in their metabolic microenvironment.

14.
PLoS One ; 12(7): e0181022, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719609

RESUMEN

BACKGROUND: Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. OBJECTIVE: We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. DESIGN: A prospective randomized, single-blinded, controlled study. SETTING: Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. PATIENTS: Forty-six patients with regular renal function undergoing partial nephrectomy. INTERVENTIONS: Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. MAIN OUTCOME MEASURES: Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months. RESULTS: Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3-6 months. CONCLUSION: Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon. TRIAL REGISTRATION: ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.


Asunto(s)
Anestésicos por Inhalación/farmacología , Riñón/efectos de los fármacos , Riñón/fisiopatología , Nefrectomía/métodos , Xenón/farmacología , Anestésicos por Inhalación/efectos adversos , Femenino , Humanos , Riñón/cirugía , Neoplasias Renales/fisiopatología , Neoplasias Renales/cirugía , Masculino , Persona de Mediana Edad , Nefrectomía/efectos adversos , Periodo Perioperatorio , Factores de Tiempo , Xenón/efectos adversos
15.
Sci Rep ; 7: 42942, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28224980

RESUMEN

Oxidative stress (OS), mitochondrial dysfunction, and dysregulation of alpha-synuclein (aSyn) homeostasis are key pathogenic factors in Parkinson's disease. Nevertheless, the role of aSyn in mitochondrial physiology remains elusive. Thus, we addressed the impact of aSyn specifically on mitochondrial response to OS in neural cells. We characterize a distinct type of mitochondrial fragmentation, following H2O2 or 6-OHDA-induced OS, defined by spherically-shaped and hyperpolarized mitochondria, termed "mitospheres". Mitosphere formation mechanistically depended on the fission factor Drp1, and was paralleled by reduced mitochondrial fusion. Furthermore, mitospheres were linked to a decrease in mitochondrial activity, and preceded Caspase3 activation. Even though fragmentation of dysfunctional mitochondria is considered to be a prerequisite for mitochondrial degradation, mitospheres were not degraded via Parkin-mediated mitophagy. Importantly, we provide compelling evidence that aSyn prevents mitosphere formation and reduces apoptosis under OS. In contrast, aSyn did not protect against Rotenone, which led to a different, previously described donut-shaped mitochondrial morphology. Our findings reveal a dichotomic role of aSyn in mitochondrial biology, which is linked to distinct types of stress-induced mitochondrial fragmentation. Specifically, aSyn may be part of a cellular defense mechanism preserving neural mitochondrial homeostasis in the presence of increased OS levels, while not protecting against stressors directly affecting mitochondrial function.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Caspasa 3/metabolismo , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Rotenona/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
16.
PLoS One ; 11(12): e0168157, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28005987

RESUMEN

One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aß), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aß and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aß, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aß in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aß levels or Aß alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aß levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aß-mediated mitochondrial toxicity. Analyzing Aß localization revealed that intracellular levels of Aß and an increased spatial association of APP/Aß with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aß accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Respiración de la Célula , Células Cultivadas , Citoplasma/metabolismo , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial , Neuroblastoma/patología
17.
New Phytol ; 204(4): 803-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25539003

RESUMEN

Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.


Asunto(s)
Hongos/fisiología , Interacciones Huésped-Patógeno , Células Vegetales/microbiología , Plantas/microbiología , Simbiosis , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta
18.
Front Neurosci ; 8: 441, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25620908

RESUMEN

The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD.

19.
Alcohol Alcohol ; 39(5): 445-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15289206

RESUMEN

AIMS: Physicians recovering from substance-related disorders are usually allowed to return to practice if they agree to remain abstinent from drugs, including alcohol, and to undergo random urine testing. Over 9000 physicians are currently involved in such monitoring programs in the US. To date, it has been difficult to adequately monitor abstinence from alcohol due to the short half-life of alcohol and no other highly specific marker. Ethyl glucuronide (EtG), a direct metabolite of alcohol, offers an extended window for assessment of drinking status (up to 5 days). Our aim was to assess the potential value of EtG testing in abstinence-based monitoring programs. PATIENTS AND METHODS: Urine samples were obtained from 100 participants in a physician monitoring program and additional samples were subsequently obtained 'for cause', 'to verify positive urine alcohol, when drinking was denied' and 'in high risk individuals'. All participants had signed contracts agreeing to remain abstinent from mood-altering drugs, including alcohol, and had agreed to random urine testing. EtG was determined using LC/MS-MS in addition to standard testing. The main outcome measure were urine specimens positive for EtG versus those positive based on standard testing for alcohol and other drugs. RESULTS: Among the initial 100 random samples collected, no sample was positive for alcohol using standard testing; however, seven were positive for EtG (0.5-196 mg/l), suggesting recent alcohol use. Subsequent EtG testing was performed clinically during the course of monitoring. Of the 18 tests performed to date, eight of eight tests performed 'for cause' were positive for EtG but negative for all other drugs including urine alcohol. All eight were confirmed positive by self reported drinking by the patient when confronted regarding the positive test result. Of six tests performed to 'confirm a positive urine alcohol' two were positive for EtG and confirmed positive by self reported drinking. For the other four samples, especially as two are from a diabetic, in vitro fermentation of ethanol is discussed. CONCLUSIONS: These data suggest that physicians in monitoring programs have a higher rate of unrecognized alcohol use than previously reported. Incorporation of EtG testing into alcohol abstinence monitoring can strengthen these programs.


Asunto(s)
Glucuronatos/orina , Personal de Salud , Trastornos Relacionados con Sustancias/epidemiología , Trastornos Relacionados con Sustancias/orina , Biomarcadores , Creatinina/orina , Humanos , Masculino , Persona de Mediana Edad , Detección de Abuso de Sustancias/métodos , Templanza
20.
J Am Soc Mass Spectrom ; 15(2): 188-93, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14766286

RESUMEN

beta-D-ethylglucuronide (EtG) is a stable Phase II metabolite of ethanol which can be detected in urine samples several days after elimination of ethanol. It is a useful diagnostic parameter for monitoring abstinence of alcoholics in alcohol withdrawal treatment. For this purpose, determination in urine is mainly performed by LC-MS, LC-MS/MS, or by GC-MS. For the mass spectrometric identification and detection of controlled substances in more sensitive fields such as forensic toxicology, workplace drug testing, doping analysis, and veterinary organic residue control, official guidelines have been released requiring a chromatographic separation and a minimum of two mass spectrometric transitions of the analyte. However, for detection of EtG none of the published LC-MS/MS methods could fulfill the minimum requirements of any of these guidelines. Therefore, an existing LC-MS/MS method has been modified by monitoring further MS/MS transitions instead of only one (deprotonated molecule [M - H](-)/product ions: m/z 75, 85, 113, and 159 optional) with the aim of withstanding administrative or court scrutiny in forensic or workplace drug testing cases. Full method validation has been performed in accordance to guidelines of the German Society of Toxicology and Forensic Chemistry (GTFCh) and requirements of ISO 17025. One application field in the United States is a workplace monitoring program to detect surreptitious alcohol use among recovering health professionals, who by contract had agreed on total abstinence after drug and alcohol withdrawal therapy.


Asunto(s)
Ciencias Forenses/métodos , Glucuronatos/orina , Espectrometría de Masa por Ionización de Electrospray , Detección de Abuso de Sustancias/métodos , Adulto , Cromatografía Liquida , Etanol/química , Etanol/metabolismo , Femenino , Glucuronatos/química , Guías como Asunto , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...